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Abstract
The unsteady, incompressible Navier-Stokes equa-

tions are used for the direct numerical simulation
(DNS) of spatially evolving disturbances in a three-
dimensional (3-D) attachment-line boundary layer.
Two-dimensional (2-D) disturbances are introduced ei-
ther by forcing at the in
ow or by harmonic-source gen-
erators at the wall; 3-D disturbances are introduced
by harmonic-source generators at the wall. The DNS
results are in good agreement with both 2-D non-
parallel theory (for small-amplitude disturbances) and
weakly nonlinear theory (for �nite-amplitude distur-
bances), which validates the two theories. The 2-D DNS
results indicate that nonlinear disturbance growth oc-
curs near branch II of the neutral stability curve; how-
ever, steady suction can be used to stabilize this dis-
turbance growth. For 3-D instabilities that are gen-
erated o� the attachment line, spreading both toward
and away from the attachment line causes energy trans-
fer to the attachment-line and downstream instabilities;
suction stabilizes these instabilities. Furthermore, 3-D
instabilities are more stable than 2-D or quasi-2-D in-
stabilities.

1. Introduction
Many instability mechanisms can occur that cause

the breakdown from laminar to turbulent 
ow on swept
wings; however, this discussion will focus on only those
disturbances that evolve near the attachment-line re-
gion (near the leading edge). Turbulent contamination,
which results from turbulence at a fuselage-wing junc-
ture, can travel out over the wing and cause laminar

ow on the wing to become turbulent. To prevent this
contamination, devices such as the Gaster bump1 or suc-
tion (Pfenninger2), implemented near the wing root, can
halt the turbulent attachment-line boundary layer from
sweeping out over the entire wing.

Although the problem of turbulent 
ow that orig-
inates from the fuselage-wing juncture can be avoided
with a device such as the Gaster bump, a Reynolds num-
ber must exist beyond which disturbances generated by
surface imperfections or particulates on the wing, cou-
pled with noise, eventually cause transition. If we
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assume that the initiated disturbances are su�ciently
small, then hydrodynamic stability theory could poten-
tially be used to predict the spatial ampli�cation and
decay of the disturbances along the attachment line.
Gaster3 �rst examined this small-amplitude disturbance
problem by using acoustic excitation along the attach-
ment line of a swept-cylinder model. Gaster generated
sine waves with various frequencies that were detected
in the 
ow by a hot-�lm gauge on the attachment line.
He noted that the recorded oscillations had preferred
frequency bands that changed with tunnel speed and
that this behavior was reminiscent of traveling-wave in-
stabilities. From his measurements, he concluded that
the small-amplitude disturbances in an attachment-line
boundary layer were stable for momentum-thickness
Reynolds numbers R� below 170 (the critical Reynolds
number was outside the experimental range). This
value for the critical Reynolds number is close to the
theoretical value of 200, which is obtained by assum-
ing a two-dimensional (2-D) attachment-line bound-
ary layer. Later, Cumpsty and Head4 experimentally
studied large-amplitude disturbances and turbulent 
ow
along the attachment line of a swept-wing model. With-
out tripping the boundary-layer instabilities, they ob-
served that laminar 
ow is stable to small-amplitude
disturbances up to R� ' 245 (which corresponds to the
top speed of the tunnel). They note that this observa-
tion does not contradict the theoretical value; an accu-
rate theoretical value would need to account for three-
dimensional (3-D) e�ects. At the same time, Pfenninger
and Bacon5 used a wing swept to 45� to experimentally
study the attachment-line instabilities in a wind tunnel
that could reach speeds large enough to obtain unstable
disturbances. With hot wires, they observed regular si-
nusoidal oscillations with frequencies comparable to the
most unstable 2-D modes of theory; these modes caused
transition at about R� ' 240. A continued interest in
the transition initiated near the attachment line of swept
wings led Poll6;7 to perform additional experiments with
the swept circular model of Cumpsty and Head4. Like
Pfenninger and Bacon5, Poll observed disturbances that
ampli�ed along the attachment line. He noted that no
unstable modes were observed below R� = 230.

With nonparallel stability theory, Hall et al.8 stud-
ied the linear stability of the attachment-line boundary-
layer 
ow called swept Hiemenz 
ow, which is sketched
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in Fig. 1. This 3-D base 
ow is an exact solution of
the Navier-Stokes equations; hence, its use is advanta-
geous in stability analyses. By assuming 2-D instability
modes, Hall et al.8 demonstrated that the attachment-
line boundary layer can theoretically be stabilized with
small amounts of suction. Hall and Malik9 extended this
theory to account for weakly nonlinear stability. They
note that subcritical instability is observed at wave num-
bers that correspond to the upper branch of the neu-
tral curve. The neutral curve and the subcritical insta-
bility region of Hall and Malik9 are shown in Fig. 2
with the experimental results of Pfenninger and Bacon5

and Poll.6;7 Consistent with the Pfenninger and Bacon5

experimental results, large-amplitude disturbances be-
came unstable before the linear critical point.
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Fig. 1. Sketch of attachment-line region of swept
Hiemenz 
ow.

Hall and Seddougui10 studied oblique waves and
their interaction in attachment-line 
ow at the large
Reynolds number limit. They note that close to the
attachment line a small band of destabilized oblique
modes appears, interacts with the 2-D mode, and causes
a breakdown of the 2-D mode. Further, they note that
oblique modes become less important further away from
the attachment line and that low-frequency modes be-
come the dominant mechanism. (Perhaps stationary
cross
ow modes arise near and dominate away from the
attachment line.)

Finally, Spalart11 used a direct numerical simula-
tion (DNS) approach, based on the fringe method, to
study the leading-edge contamination problem. Small-
amplitude disturbances were initialized with white
noise. A Reynolds number range with a width of 50
was selected. At the lower Reynolds number, all distur-
bances decayed; at the higher number, at least one mode
was ampli�ed. The neutral curve predicted by Hall
et al.8 fell within the Reynolds number range used by

Spalart. These results show qualitative agreement with
the linear theory of Hall et al.8 Furthermore, Spalart11

demonstrated that simple Hiemenz 
ow (i.e., R = 0) is
both linearly and nonlinearly stable.

Fig. 2. Neutral curve, experimental regions of instabil-
ity growth, and theoretical region of subcritical growth
in attachment-line boundary layer.

For the present study, a 2-D spatial DNS code de-
scribed by Joslin et al.12;13 and a newly developed 3-
D spatial DNS code described in this paper are used
to study the linear and nonlinear instabilities that ini-
tiate and develop along the attachment line of swept
Hiemenz 
ow. The region near branch II of the neutral
curve is investigated with DNS to verify the nonparal-
lel theory of Hall et al.8 for in�nitesimal disturbances.
Subcritical instability growth in the region shown in
Fig. 2 was predicted with the weakly nonlinear the-
ory of Hall and Malik;9 however, recent DNS results
by both Jim�enez et al.14 and Theo�lis15 failed to �nd
this subcritical growth. Jim�enez et al.14 contend that
this subcritical growth region does not exist. Here, an
independent study is conducted to determine if nonlin-
early growing disturbances can be found. Furthermore,
because the true physical problem involves 3-D distur-
bances that may be on or o� the attachment line, 3-D
simulations are conducted to determine the importance
of 3-D disturbances near the attachment line. Steady
suction is used to control instability growth.
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2. Problem Formulation
For the problem at hand, the velocities ~u = (~u; ~v; ~w)

and the pressure ~p are solutions of the incompressible,
unsteady Navier-Stokes equations. The instantaneous
velocities ~u and the pressure ~p may be decomposed into
base and disturbance components as

f~u; ~pg(x; t) = fU;Pg(x) + fu; pg(x; t) (1)

The base 
ow is given by the velocities U = (U; V;W )
and the pressure P ; the disturbance component is given
by the velocities u = (u; v; w) and the pressure p. A
Cartesian coordinate system x = (x; y; z) is used, in
which x is aligned with the attachment line, y is wall
normal, and z corresponds to the direction of 
ow ac-
celeration away from the attachment line.

Originally described by Hall et al.8, the base 
ow
referred to as a swept Hiemenz 
ow is an exact solution
to the incompressible 3-D Navier-Stokes equations. The
velocities at the wall are

U = W = 0 and V = Vo at y = 0 (2)

Away from the wall, the velocities are

U ! Uo and W !Wo

z

L
as y !1 (3)

where Uo; Vo;Wo are independent velocity scales and L
is the length scale in the 
ow-acceleration direction z.
Shown in Fig. 1, the 
uid comes straight down toward
the wall; it turns away from the attachment line into
the �z directions to form a boundary layer. In the x
direction, the 
ow is uniform. In the absence of sweep,
Uo is equal to 0, and the 
ow reduces to the 2-D stagna-
tion 
ow �rst described by Hiemenz.16 A boundary-layer
thickness is de�ned in the yz-plane as � =

p
�L=Wo; a

Reynolds number, as R = Uo�=� = 2:475R�; and a tran-
spiration constant, as � = Vo

p
L=�Wo, where � = 0 for

the zero-suction case. If the attachment line is assumed
to be in�nitely long, the velocities become functions of
z and y only, and an exact solution of the Navier-Stokes
equations can be found.

In accordance with Hall et al.,8 the equations for
the base 
ow are

Ŵ + V̂Y = 0 (4)

V̂Y YY + V̂ 2
Y � V̂ V̂Y Y � 1 = 0 (5)

ÛY Y � V̂ ÛY = 0 (6)

where fX;Y; Zg = fx; y; zg=�, the subscript Y denotes
derivatives with respect to Y , and the hats refer to sim-
ilarity variables. The boundary conditions are given by

V̂Y = 0; V̂ = �; and Û = 0 at Y = 0 (7)

V̂Y !�1 and Û ! 1 as Y !1 (8)

If the solutions of equations (4)-(8) are nondimensional-
ized with respect to the attachment-line velocity Uo, the
boundary-layer thickness �, and the kinematic viscosity
�, then the base 
ow is

U (Y ) = Û (Y ); V (Y ) =
1

R
V̂ (Y ); W (Y; Z) =

Z

R
Ŵ (Y )

(9)
For the disturbance portion of equation (1), the 3-

D incompressible Navier-Stokes equations are solved in
disturbance form as

@u

@t
+(u�r)u+(U �r)u+(u�r)U = ��p+

1

R
r2u (10)

with the continuity equation

r � u = 0 (11)

and boundary conditions

u = 0 at Y = 0 and u! 0 as Y !1 (12)

Disturbances are forced either at the in
ow or
by harmonic-source generators, which use suction and
blowing at the wall and are assumed to decay to zero in
the far �eld. At the in
ow, solutions of the base 
ow are
forced, and the bu�er-domain technique is employed as
the out
ow condition.

3. Numerical Methods of Solution
In the attachment-line (X) direction, discretization

is accomplished with fourth-order central �nite di�er-
ences for the pressure equation and sixth-order compact
di�erences for the momentumequations in the interior of
the computational domain. At the boundary and near-
boundary nodes, fourth-order forward and backward dif-
ferences are used. The discretization yields a pentadiag-
onal system for the �nite-di�erence scheme and a tridi-
agonal system for the compact-di�erence scheme. The
approximations can be solved e�ciently by appropriate
backward and forward substitutions.

In both the wall-normal (Y ) and 
ow-acceleration
(Z) directions, Chebyshev series are used to approx-
imate the disturbances at Gauss-Lobatto collocation
points. A Chebyshev series is used in the wall-normal
direction to provide good resolution in the high-gradient
regions near the boundaries. Furthermore, the use of as
few grid points as possible results in signi�cant com-
putational cost savings. In particular, the use of the
Chebyshev series enables an e�cient pressure solver.
Because this series and its associated spectral operators
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are de�ned on [-1, 1] and because the physical prob-
lem of interest has a truncated domain [0; ymax] and
[�zmax; zmax], transformations are employed. Further-
more, stretching functions are used to cluster the grid
near both the wall and the attachment line. For fur-
ther details on the properties and the use of spectral
methods, refer to Canuto et al.17

For time marching, a time-splitting procedure was
used with implicit Crank-Nicolson di�erencing for nor-
mal di�usion terms; an explicit three-stage Runge-Kutta
(RK) method was used for the remaining terms. The
pressure is omitted from the momentum equations (10)
for the fractional RK stage, which leads to

@u

@t

�

+(u� �r)u�+(U �r)u�+(u� �r)U =
1

R
r2u� (13a)

u�� = u
BC

+ hmt

�
(1 +

hmt
hm�1t

)rpm� �
hmt
hm�1t

rpm�1�

�

(13b)
where hmt are time-step sizes in the RK scheme, time is
advanced from um to the intermediate disturbance ve-
locities u�, and u�� are intermediate boundary conditions
described by Joslin et al.12 to reduce the time-marching
slip velocities that may arise. For the boundary con-
ditions, u

BC
= 0 for a rigid wall and u

BC
= uo for an

in
ow condition or a wall-slot condition evaluated at the
appropriate time in the RK stage.

A full RK stage is completed by advancing the so-
lution in time from u� to um+1 by

@u

@t

m+1

= �rpm+1 (14a)

r � um+1 = 0 (14b)

If the divergence of equation (14a) is taken and zero
divergence of the 
ow �eld is imposed at each RK stage,
then a pressure equation is obtained:

r2pm+1 =
1

hmt
(r � u�) (15)

which is subject to homogeneous Neumann boundary
conditions. This boundary condition is justi�ed in
the context of a time-splitting scheme as discussed by
Streett and Hussaini.18

The solution is determined on a staggered grid.
The intermediate RK velocities (u�) are determined by
solving equation (13) on Gauss-Lobatto points. The
pressure (pm+1) is found by solving equation (15) on
Gauss points and is then spectrally interpolated onto
Gauss-Lobatto points. Then, the full RK stage veloci-
ties (um+1) are obtained from equation (14) on Gauss-
Lobatto points. The above system is solved three con-
secutive times to obtain full time-step velocities. The

three-stage RK time steps given by Williamson19 are
fh1

t
; h2

t
; h3

t
g = f1=3; 5=12; 1=4ght, where the sum of the

three RK time stages equals the full time step (ht).
To satisfy global mass conservation, an in
uence-

matrix method is employed and is described in some de-
tail by Streett and Hussaini,18 Danabasoglu, Biringen,
and Streett;20;21 and Joslin et al.12;13 For boundary-
layer 
ow, four Poisson-Dirichlet problems are solved
for the discrete mode that corresponds to the zero eigen-
value of the system; single Poisson-Neumann problems
are solved for all other modes. To e�ciently solve the
resulting Poisson problem given by equation (15), the
tensor-product method of Lynch et al.22 is used. The
discretized form of equation (15) is�

Lx 
 I 
 I + I 
 Ly 
 I + I 
 I 
 Lz

�
p = R (16)

where p is the desired pressure solution; R is the right
side of equation (15); I is the identity matrix; Lx is the
attachment-line-directed central �nite-di�erence opera-
tor; Ly and Lz are the wall-normal-directed and 
ow-
acceleration-directed spectral operators; and 
 infers a
tensor product. By decomposing the operators Ly and
Lz into their respective eigenvalues and eigenvectors, we
�nd

Ly = Q�yQ
�1 and Lz = S�zS

�1 (17)

where Q and S are the eigenvectors of Ly and Lz, Q�1

and S�1 are inverse matrices of Q and S, and �y and
�z are the eigenvalues of Ly and Lz . The solution pro-
cedure reduces to the following sequence of operations
to determine the pressure p:

p� = (I 
Q�1 
 S�1)R

py = (Lx 
 I 
 I + I 
 �y 
 I + I 
 I 
 �z)
�1p�

p = (I 
Q
 S)py (18)

Because the number of grid points in the attachment-
line direction is typically an order of magnitude larger
than the wall-normal and 
ow-acceleration directions,
the operator Lx is much larger than both Ly and Lz. Be-
cause Lx is large and has a sparse pentadiagonal struc-
ture and because �y and �z in
uence the diagonal only,
an LU decomposition is performed for the second stage
of equation (18) once, and forward and backward solves
are performed for each time step of the simulation. The
�rst and third steps of the pressure solve for equation
(18) involve matrix multiplications.

To obtain the attachment-line-directed operator
Lx, central �nite di�erences are used. To �nd the wall-
normal Ly and 
ow-acceleration Lz operators, the fol-
lowing matrix operations are required:

Ly = IG
GL
Dy

~DyI
GL

G
and Lz = IG

GL
Dz

~DzI
GL

G
(19)
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where Dy is a spectral, wall-normal derivative opera-
tor for the stretched grid; Dz is the spectral, derivative
operator that is grid clustered in the attachment-line re-
gion; and ~Dy and ~Dz are the derivative operators with
the �rst and last rows set to 0. The interpolation matrix
IG
GL

operates on variables at Gauss-Lobatto points and
transforms them to Gauss points; the interpolation ma-
trix IGL

G
performs the inverse operation. The spectral

operators are described in detail by Canuto et al.17 and
Joslin et al.13

The operators fLx; Ly; Lzg, the eigenvalue matri-
ces f�y;�zg, the eigenvector matrices fQ;Q�1; S; S�1g,
and the in
uence matrix are all mesh-dependent matri-
ces and must be calculated only once.

The bu�er-domain technique introduced by Streett
and Macaraeg23 is used for the out
ow condition. As
shown by Joslin et al.12 for the 
at-plate boundary-
layer problem, a bu�er length of three disturbance wave-
lengths is adequate for traveling waves. The distur-
bances are assumed to be from the discrete spectrum,
which exponentially decays with distance from the wall.
Both at the wall and in the far �eld, homogeneous
Dirichlet conditions are imposed. For 3-D simulations,
both homogeneous Dirichlet and Neumann conditions
have been used in the 
ow-accelerated direction. With
either condition, the disturbance will develop in the
same manner along the attachment line, provided that
the boundaries are su�ciently far from the attachment-
line region. The base 
ow is used for the in
ow bound-
ary condition. Finally, disturbances are forced by un-
steady suction and blowing of the wall-normal veloc-
ity component through the wall (harmonic-source gen-
erators). Although the disturbances may be generated
by random frequency input, the disturbances of interest
here are forced with known frequencies.

4. Two-Dimensional Simulation Results
The simulations are performed on a grid of 661

points (' 60 points per wavelength) along the attach-
ment line and 81 points in the wall-normal direction.
The far-�eld boundary is located at 50� from the wall,
and the computational length along the attachment line
is 216:56�. For the time-marching scheme, the distur-
bance wavelength was divided into 320 time steps per
period for small-amplitude disturbances and into 2560
time steps for large-amplitude disturbances (stability
considerations). The total Cray Y-MP time for a sim-
ulation with a single processor was 1.5 hrs for small-
amplitude disturbances and 11 hrs for large-amplitude
disturbances.

4.1 Subcritical Growth

Recall that Hall and Malik9 developed a weakly

nonlinear theory to predict the growth and decay of in-
stabilities in the attachment-line boundary-layer 
ow.
With swept Hiemenz 
ow, they discovered regions where
2-D disturbances encountered subcritical growth; how-
ever, the linear theory predicted stable modes. Later,
both Jim�enez et al.14 and Theo�lis15 discounted this dis-
covery with recently developed 2-D DNS codes. To re-
solve this discrepancy, the results from the present study
of attachment-line boundary-layer disturbances in swept
Hiemenz 
ow (computed with a well-tested spatial DNS
code) are compared with the previous studies of Hall et
al.8, Hall and Malik9, Jim�enez et al.14, and Theo�lis.15

In addition, the e�ects of suction on unstable modes are
documented.

Disturbances for the �rst simulations are forced at
the computational in
ow with an amplitude of A =
0:001 percent (i.e., some small amplitude), to compare
the DNS results with linear stability theory (LST). The
Reynolds numberR = 570 and the frequency ! = 0:1249
correspond to the region of subcritical growth found
by Hall and Malik9, in which disturbances are linearly
stable. Disturbances that evolve in both a base 
ow
that complements the quasi-parallel LST assumptions
(V = 0) and the full, swept Hiemenz 
ow are computed
with DNS. The computed disturbance decay rate and
the wavelength in the quasi-parallel 
ow agree with LST.
The disturbance that propagates in the complete swept
Hiemenz 
ow closely retains the wavelength predicted
by LST, but decays at a slower rate than that predicted
by LST. This change in decay rate is consistent with
the theory of Hall et al.8 From this comparison, we �nd
that the wall-normal velocity (V ) terms in the stability
equations have a destabilizing e�ect on the disturbance.

The fundamental wave, the mean-
ow distortion,
and the harmonics from a simulation forced at the in
ow
with a large amplitude of A = 12 percent, a Reynolds
number of R = 570, and a frequency of ! = 0:1249
are shown in Fig. 3. After a transient region of ad-
justment, the fundamental wave encounters subcritical
growth, which is in agreement with the weakly nonlin-
ear theory of Hall and Malik.9 Because DNS involves
many parameters (e.g., grid, time-step size, order of
methods), the potential for errors was high in the work
of Jim�enez et al.;14 erroneous results may have misled
them to refute the concept of subcritical growth. For
this 
ow, instantaneous and mean attachment-line and
wall-normal velocity pro�les at various attachment-line
locations are shown in Fig. 4. The pro�les indicate
that time-dependent distortions to the base 
ow are ob-
served, but the mean 
ow (U + uo), which consists of
the base 
ow and the mean-
ow distortion components,
shows little deviation from the base-
ow solution. How-
ever, both the time-dependent and mean wall-normal
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pro�les undergo distortions because of the disturbance.
Finally, Fig. 5 shows the wall-normal component of the
base 
ow that corresponds to R = 570 and R = 670.
A comparison of these base-
ow pro�les with the mean

ow of Fig. 4 shows that a large-amplitude disturbance
produces a distortion to the base 
ow, which causes an
e�ective increase in the base Reynolds number. The
increase in Reynolds number alone does not account
for the growing mode (based on linear stability analysis
with the same frequency). However, we surmise that
(similar to nonparallel e�ects) nonlinear disturbances
broaden the neutral curve toward higher frequencies in
the critical region.

Fig. 3. Nonlinear subcritical disturbance growth in
attachment-line boundary layer at R = 570 and ! =
0:1249.

Fig. 4. Instantaneous and mean velocity pro�les of non-
linear, subcritically growing disturbance in attachment-
line boundary layer at R = 570 and ! = 0:1249.

Fig. 5. Wall-normal component of base 
ows that cor-
responds to R = 570 and R = 670.

To control the subcritical growth of disturbances,
various levels of suction are employed. Although Hall
and Malik9 note that suction makes the 
ow more sus-
ceptible to subcritical instability growth, Fig. 6 shows
that this subcritical disturbance growth can be con-
trolled by using small levels of suction. If the 2-D DNS
results mimic the actual 3-D behavior of the 
ow, then
large-amplitude disturbances generated on the attach-
ment line can be controlled with suction.

Fig. 6. Control of nonlinear subcritical disturbance
growth in attachment-line boundary layer at R = 570
and ! = 0:1249 with suction.
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4.2 Linear & Nonlinear Instability at Upper Branch

Stability in the region near branch II of the neutral
curve is studied. The disturbances are forced by suction
and blowing at the wall with an amplitude of A = 0:001
percent. The growth and the decay of various frequency
waves at R = 684:2 are shown in Fig. 7. Approximate
growth rates are listed in the �gure with a superimposed
neutral solution (horizontal line). These results are in
agreement with the neutral curve that was predicted
theoretically by Hall et al.8 The results also agree with
a recent linear DNS study by Theo�lis.24

Fig. 7. Instability growth and decay near neutral curve
of attachment-line boundary layer at R = 684:2.

The e�ect of both steady suction and steady blow-
ing on linear instability growth in this region is docu-
mented. The ampli�cation of a growing wave at R =
684:2 and ! = 0:1150 is shown with the growth or de-
cay of similar waves that evolve in swept Hiemenz 
ow
in the presence of steady suction or blowing. The results
indicate that suction stabilizes and blowing signi�cantly
destabilizes the disturbance. The e�ects of suction and
blowing on disturbances computed by DNS are in agree-
ment with the theory of Hall et al.8 for small-amplitude
disturbances.

To determine if nonlinear disturbance growth or
equilibrium states can be found above branch II of the
neutral stability curve and to ensure that the subcriti-
cal growth (obtained both by Hall and Malik9 and the
DNS shown in Fig. 3) did not arti�cially result from
the disturbance forcing at the in
ow boundary, a se-
quence of simulations was performed with harmonic-
source generators at the wall. The disturbances are
forced by suction and blowing at a decaying mode that
corresponds to R = 684:2 and ! = 0:1249. The ini-

tial amplitudes of the disturbances for each simulation
were incrementally increased until the otherwise linearly
decaying mode became ampli�ed because of the nonlin-
ear forcing. With steady suction, the results further
demonstrate that small amounts of suction can be used
to stabilize these disturbances. To study the subcrit-
ical growth phenomenon, Theo�lis15 used suction and
blowing to initiate disturbances in the simulations. It is
clear from the present results that Theo�lis15 failed to
obtain subcritical growth because the suction and blow-
ing amplitudes were too small to generate a subcritically
growing disturbance.

The simulations are repeated for the mode that cor-
responds to R = 684:2 and ! = 0:1230, which is closer
to branch II of the neutral curve. The results indi-
cate that nonlinear growth can be obtained from dis-
turbances with smaller initial amplitudes. As expected,
smaller amounts of suction are required to stabilize the
disturbances. This series of simulations was conducted
to demonstrate nonlinear growth close to branch II of
the neutral curve; these results create a foundation for
3-D nonlinear simulations. Because signi�cant compu-
tational cost is involved with 3-D simulations and be-
cause the forcing of disturbances with very large ini-
tial amplitudes requires more grid resolution, these 2-D
simulations have established that forcing smaller ampli-
tude disturbances close to branch II will yield nonlin-
early growing modes. Furthermore, smaller amounts of
suction can be used to stabilize these growing modes.

4.3 Linear & Nonlinear Instability at Lower Branch

Finally, the region near branch I of the neutral
curve is studied. The evolution of disturbances gen-
erated by suction and blowing at R = 684:2 and ! =
0:0840 is shown in Fig. 8. For small-amplitude distur-
bances, the theory of Hall et al.8 give slightly di�erent
results compared with both the present DNS results and
the DNS results of Theo�lis.24 Because the relative er-
rors between the theory and DNS frequencies are only
1 to 2 percent, the preditions of Hall et al.8 for the in-
stability characteristics are correct for practical applica-
tions. Various large-amplitude disturbances were forced
by suction and blowing; no subcritical growth was de-
tected near branch I of the neutral curve. However,
supercritical large-amplitude disturbances approach a
state that agrees with Hall and Malik.9 Furthermore,
this equilibriumlike state agrees with the experimental
observations of Pfenninger and Bacon.5

5. Three-Dimensional Simulation Results
The 3-D simulations are performed on a grid of 661

points along the attachment line, 81 points in the wall-
normal direction, and 25 points in the 
ow-acceleration
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direction. The far-�eld boundary is located at 50� from
the wall, the computational length along the attachment
line is 216:56�, and the 
ow-acceleration boundaries are
located �100� from the attachment line. For the time-
marching scheme, the disturbance wavelength was di-
vided into 320 time steps per period. The total Cray
Y-MP time for a simulation with a single processor was
approximately 25 hrs (with a single processor).

Fig. 8. Linear decay and nonlinear equilibrium in
attachment-line boundary layer at R = 684:2 and
! = 0:0840. (Disturbances normalized by initial am-
plitudes.)

5.1 Region of Disturbance Decay

The nonparallel theory of Hall et al.8 outlined
the stable and unstable regions for in�nitesimal distur-
bances. In a segment of the subcritical region, large-
amplitude disturbances were found by Hall and Malik9

to exhibit nonlinear ampli�cation. The 2-D DNS re-
sults con�rmed this subcritical growth phenomenon. In
this section, the Reynolds number R = 570 and the
frequency ! = 0:1249, which are parameters in the sub-
critical region, are used in the study of the evolution
of small-amplitude 3-D disturbances. The results are
compared with LST and the 2-D DNS results.

To compare with the 2-D results, a quasi-2-D dis-
turbance is initiated in the 3-D 
ow. At best, this dis-
turbance is an approximation to a true 2-D instability.
To generate this 2-D disturbance, a harmonic source is
used that is elongated (�44:2 < Z < 44:2) in the 
ow-
acceleration direction. This disturbance-forcing method
is comparable to using a vibrating ribbon to generate 2-
D disturbances for wind-tunnel experiments. The qual-
itative features of a disturbance generated by the har-
monic source with a small amplitude (e.g., A = 0:001

percent) are shown in Fig. 9. The disturbance evolu-
tion is viewed from above and along the attachment line.
The wave travels along the attachment line without sig-
ni�cant 3-D features. However, because the base 
ow is
accelerating away from the attachment line (in the �Z
directions), wave spreading occurs with distance from
the harmonic source, and the rate of spreading increases
with distance along the attachment line.

Fig. 9. Side and top view of 3-D traveling wave in
attachment-line boundary layer.

The quasi-2-D simulation results for both a quasi-
parallel base 
ow (i.e., V = 0) and the full swept
Hiemenz 
ow were compared with linear stability the-
ory. The amplitude, decay rate, and wavelength of dis-
turbances simulated with the quasi-parallel 
ow are in
excellent quantitative agreement with the 2-D LST re-
sults. This agreement suggests that in this parameter
region the elongated harmonic source can approximate
a 2-D disturbance on the attachment line. Similar to
the 2-D DNS comparison, the full swept Hiemenz base

ow destabilizes disturbances due to the inclusion of the
V velocity component. This destabilizing feature is con-
sistent with theory.

To further demonstrate the 2-D nature of the dis-
turbance generated with the elongated harmonic source,
Fig. 10 shows the attachment-line results compared
with results at a distances 13� and 35� o� the attach-
ment line. The evolution patterns are identical out to
near 35�, where small deviations are observed. This im-
plies that the elongated harmonic source is generating
primarily 2-D waves and that the attachment-line ve-
locity component is dominant (i.e., the amplitude of the
w velocity component of the disturbance is too small
to modify the dominant u component). The u and w
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velocity pro�les at Z = 13� and 35� reveal only small
di�erences with u velocity components and large di�er-
ences with w velocity components. The w velocity is an
order of magnitude smaller than the u velocity, which is
the reason for the good agreement between the u veloc-
ity on the attachment line with the same components
o� the attachment line. Furthermore, although no sym-
metry assumption is made, 
ow symmetry about the at-
tachment line is realized with this particular harmonic-
source generator.

Fig. 10. Flow-acceleration variation of simulated 2-D
disturbance evolution in 3-D attachment-line base 
ow
for R = 570 and ! = 0:1249.

In Figs. 11 and 12, 3-D simulation results on the
attachment line are compared with previous 2-D DNS
results. Figure 11 clearly shows a signi�cant amplitude
disparity between the 2-D and 3-D results. Because
the 3-D simulations contain a 
ow-acceleration veloc-
ity component w, an additional degree of freedom is
available to disperse (or absorb) energy. Hence, the
harmonic-source generator forces less energy into the
attachment-line velocity component u. The 2-D and 3-D
results (normalized by the 2-D maximumof the u veloc-
ity) are also shown in Fig. 11 to enable a growth-rate
comparison. The disturbance is slightly more destabi-
lized in the full 3-D 
ow than in the 2-D 
ow approxi-
mation. Similar qualitative di�erences are evident when
disturbance growth rates in quasi-parallel 
ow are com-
pared with those in nonparallel 
ows. Finally, normal-
ized primary wave velocity pro�les are compared in Fig.
12. The shapes of the compared pro�les agree well. The
results demonstrate that 2-D simulations capture the
qualitative features of the true 3-D 
ow; in addition, be-
cause a third degree of freedom (w; z) is not present in

the 2-D simulations, amplitude information is overpre-
dicted, and growth-rate information is underpredicted.
These results suggest that much larger disturbances will
be required to generate subcritical disturbance growth
in the 3-D 
ow (if subcritical growth is possible in the
3-D 
ow).

Fig. 11. Comparison of 2-D and 3-D disturbance evolu-
tions in 3-D attachment-line boundary layer for R = 570
and ! = 0:1249.

Fig. 12. Comparison of normalized 2-D and 3-D pri-
mary wave velocity pro�les at X = 100 in attachment-
line boundary layer at R = 570 and ! = 0:1249.

9



In the nonparallel theory of Hall et al.8, the z-
dependent form for the 
ow-accelerated velocity com-
ponent w was a key assumption, which led to a system
of ordinary di�erential equations rather than partial dif-
ferential equations. Figure 13 shows the maximum am-
plitudes of the 
ow-accelerated velocity component at
X = 100 with distance from the attachment line. For
the present harmonic source, this z-dependent distur-
bance form assumed by Hall et al.8 is realized in the
simulation near the attachment line; however, because
the harmonic source has a �nite length, the disturbance
behavior near the harmonic-source ends deviates from
the assumed z dependence. The harmonic-source ends
cause a perturbation to the 
ow. Similar di�culties in
disturbance initialization can be found in the experi-
ments; however, the core of the test region (i.e., the at-
tachment line) is not signi�cantly contaminated by these
end e�ects.

Fig. 13. Maximum 
ow-accelerated disturbance veloc-
ity w with distance from attachment line at X = 100,
R = 570, and ! = 0:1249.

In the next section, the simulation results are pre-
sented for the neutral-curve regions described by the
nonparallel theory of Hall et al.8

5.2 The Neutral-Curve Region

In parameter regimes near the neutral curve, �nite
Reynolds number instabilities are studied near the up-
per branch, the lower branch, and the critical point to
locate the neutral curve. The harmonic-source distur-
bance generator is used to generate the 2-D modes on
the attachment line.

For the Reynolds number R = 684:2, the 3-D sim-
ulations yield an upper branch mode for the frequency
! = 0:1263; the nonparallel theory of Hall et al.8 and
the 2-D DNS results indicate that the upper branch is

between ! = 0:1230 and ! = 0:1240. Although the 2-D
and 3-D results yield di�erent upper branch locations,
the relative error, or di�erence, in the locations is only
about 2 percent. This di�erence may be attributed to
the assumption that a 2-D disturbance is generated from
a 3-D harmonic source or that the 3-D base 
ow does
not support pure 2-D disturbances.

Near the critical-point region, digitized data from
the results of Hall et al.8 indicate that the Reynolds
number R = 580 and frequency ! = 0:1104 is the point
furthest upstream at which an in�nitesimal 2-D distur-
bance becomes unstable. Although this value is not the
exact critical point, this Reynolds number and frequency
combination lies on the neutral curve in the region of the
critical point. The 3-D simulation results suggest that
for the frequency ! = 0:1104, the Reynolds number for
neutral stability is slightly greater than R = 585. This
leads to less than a 1-percent di�erence between the non-
parallel theory and the simulation results.

Finally, simulations are performed near the lower
branch of the neutral curve. The results indicate that
for the Reynolds number R = 684:2 the lower branch
of the neutral curve is approximately at the frequency
! = 0:082, which agrees with nonparallel theory.

For practical engineering purposes, the nonparallel
theory of Hall et al.8 agrees with the 3-D DNS results
in the limit of in�nitesimal quasi-2-D disturbances that
propagate along the attachment line.

5.3 Three-Dimensional Disturbances

To generate 3-D disturbances, the 
ow-acceleration
length of the harmonic-source generator is reduced to
enable a more direct transfer of energy to the w velocity
component. Disturbances computed in the parameter
regime described by a Reynolds number R = 570 and
frequency ! = 0:1249 are shown in Fig. 14. By re-
ducing the length of the original harmonic source from
�44:2 < Z < 44:2 to �20:4 < Z < 20:4, the gener-
ated disturbance is very similar to the previous quasi-
2-D disturbance. However, by reducing the harmonic-
source length to �13:4 < Z < 13:4 (one-third of the
original length), the generated disturbance is signi�-
cantly stabilized on the attachment line. The evolu-
tion no longer represents a quasi-2-D disturbance and
becomes more comparable to a harmonic point source.
Two-dimensional instabilities are apparently dominant
on the attachment line.
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Fig. 14. Evolution of disturbances in attachment-line
boundary layer at R = 570 and ! = 0:1249, where dis-
turbances are generated with harmonic sources of vari-
ous lengths.

Next, a harmonic-source generator is used to intro-
duce a disturbance o� the attachment line to determine
the direction and rate of instability growth or decay.
The results of a disturbance generated with a harmonic
source located at 27:8 < Z < 0 are shown in Fig. 15.
The top view indicates that the harmonic source gener-
ates a disturbance that evolves along the attachment
line with spreading both away from and toward the
attachment line. These results suggest that the 
ow-
accelerated shear away from the attachment line has in-
su�cient strength to deter the spreading of the distur-
bance toward the attachment line. Figure 15 also shows
that the maximum-amplitude u velocity on the attach-
ment line initially undergoes a slight decay and then
continues to grow. The amplitude informattion along
the attachment line alone indicates an unstable mode
in the simulations; however, the top view of the 
ow
�eld indicates that this ampli�cation is caused by the
wave-spreading phenomenon. The combined amplitude
and visual results imply that a disturbance generated o�
(but near) the attachment line can supply energy to the
attachment region by the spreading of the wave pattern.
In turn, this energy supply may feed an unstable mode
on the attachment line.

Fig. 15. Evolution of disturbance velocity u on at-
tachment line and top view of 3-D traveling wave in
attachment-line boundary layer at R = 570 and ! =
0:1249.

For the �nal simulation in this subsection, the
Reynolds number R = 684:2 and the frequency ! =
0:1150 are used because nonparallel theory predicts that
in�nitesimal 2-D disturbances are unstable on the at-
tachment line. The disturbance is generated with a har-
monic source that is positioned at 35:6 < Z < 6:6 (i.e.,
completely o� the attachment line). The top view of
the computed disturbance is shown in Fig. 16. The har-
monic source has generated a disturbance with a circu-
lar pattern. As before, the disturbance evolves primarily
along the attachment line, and the wave spreads both
away from and toward the attachment line. The ampli-
tude of the disturbance at various Z locations is shown
in Fig. 17. The disturbance has a peak amplitude at ini-
tiated at Z = 20:4 and undergoes a strong decay along
the attachment line, although the mode is predicted to
be unstable on the attachment line. The spread of the
disturbance toward the attachment line indicates that
the disturbance on the attachment line is either unsta-
ble or merely gaining energy at a rate comparable to the
spreading rate. However, because the theory for 2-D dis-
turbances indicates that the disturbance is unstable on
the attachment line, some combination of energy trans-
fer due to spreading and linear growth is likely. How-
ever, the more stable 3-D modes may rob the 2-D mode
of energy and prevent 
ow transition along the attach-
ment line. Note that the u velocity components at all Z
locations indicate increased amplitudes with along the
attachment line, except for the Z = 20:4 location which
indicates decay. Spreading causes the other Z locations
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to receive energy, but because the Z = 20:4 location was
the location of maximum initial amplitude and because
the disturbance propagates along and away from the at-
tachment line, the location of the maximum velocity is
no longer at Z = 20:4. This results in an observed de-
cay at the Z = 20:4 station. Figure 18 shows velocity
pro�les at various Z locations at X = 100. As energy is
transferred because of this spreading, the pro�les near
the attachment line undergo a distortion near the wall.
This distortion leads to multiple maximums and pro�le
shapes that deviate from the linear theory.

Fig. 16. Top view of disturbance evolution in
attachment-line boundary layer at R = 684:2 and ! =
0:1150, where disturbance is generated with harmonic
source near attachment line.

Fig. 17. Evolution of disturbance generated o� attach-
ment line in attachment-line boundary layer at R =
684:2 and ! = 0:1150.

Fig. 18. Comparison of 3-D disturbance velocity pro�les
at X = 100 near attachment line at R = 684:2 and
! = 0:1150.

5.4 Suction and Blowing E�ects

By changing the boundary conditions in equation
(7) from � = 0, steady suction (� < 0) or blowing
(� > 0) can be used to alter the growth or decay
of disturbances in the attachment-line boundary-layer

ow. Near the upper branch of the neutral curve, the
Reynolds number R = 684:2 and frequency ! = 0:1230
are used for the simple test case of linear stability with
suction and blowing. The results of the quasi-2-D dis-
turbance generated with the elongated harmonic source
(�44:2 < Z < 44:2) indicate that suction stabilizes and
blowing destabilizes the disturbance, which agrees with
the theoretical results by Hall et al.8 and the 2-D DNS
results.

The results for the 3-D disturbance generated with
a harmonic source of length 35:6 < Z < 6:6 at the
Reynolds number R = 684:2 and frequency ! = 0:1150
indicated growth in the energy on the attachment line
(Figs. 16 and 17). Because 2-D disturbances that cor-
respond to this Reynolds number and frequency are lin-
early unstable on the attachment line, the presence of
energy should lead to instability growth. Computations
with suction are used to stabilize the disturbance on and
near the attachment line. Clearly, Fig. 19 shows that
suction stabilizes the disturbances located both on and
o� the attachment line.
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Fig. 19. E�ect of suction on evolution of disturbance
generated o� attachment line in attachment-line bound-
ary layer at R = 684:2 and ! = 0:1150.

6. Concluding Remarks
In this paper, the results of two- (2-D) and three-

dimensional (3-D) spatial direct numerical simulations
(DNS) of attachment-line instabilities in swept Hiemenz

ow are presented. With a quasi-parallel base 
ow
approximation, the small-amplitude disturbances were
shown to grow and decay in agreement with linear sta-
bility theory. The true swept Hiemenz base 
ow leads to
a destabilization of the disturbances, which agrees with
the nonparallel theory of Hall et al.8 Furthermore, the
e�ect of steady suction and blowing on small-amplitude
disturbances was evaluated with DNS. In agreement
with the results of Hall et al.,8 suction stabilizes and
blowing destabilizes small-amplitude disturbances.

Subcritical instability growth was detected with
the weakly nonlinear theory of Hall and Malik9 and
later refuted with 2-D DNS results by Jim�enez et al.14

Theo�lis.15 Although it is clear that Theo�lis15 did not
obtain subcritical growth because the initial disturbance
amplitudes were too small, it is not clear why Jim�enez
et al.14 failed to obtain subcritical growth. The present
simulations have found subcritical instability growth
and con�rm the former theoretical results of Hall and
Malik9. We surmise that (similar to nonparallel e�ects)
nonlinear disturbances broaden the neutral curve to-
ward higher frequencies in the critical region. Further-
more, the DNS results demonstrate that small amounts
of steady suction stabilize the otherwise subcritically

growing disturbances.
The neutral-curve location predicted by the non-

parallel theory of Hall et al.8 agreed well with the 3-D
simulation results in the limit of the in�nitesimal 2-D
disturbances, that propagate along the attachment line.

For the parameter regions studied here, instabili-
ties that are generated from harmonic sources located
o� the attachment line spread both toward and away
from the attachment line. Because of this spreading,
energy from the initial disturbance is transferred to the
attachment-line instabilities; however, suction stabilizes
these instabilities. Furthermore, 3-D instabilities were
more stable than 2-D or quasi-2-D instabilities.
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